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Abstract
A model of covalent and ionic bond strength is proposed in terms of the tensile unbinding force
by introducing the concept of the effectively bonded valence electron (EBVE) number of a
chemical bond. Bond strength proves to be exclusively dependent on two microscopic
parameters: bond length and EBVE number. This model allows us to determine bond strength
for a variety of crystals and accounts for the observation that a low-coordination number of
binding atoms has a tendency to higher bond strength. For crystals of simple structures, we
propose linking bond strength to the theoretical tensile strength of a crystal; the latter
reproduces the results of first-principles calculations. The model also allows for the assessment
of the theoretical tensile strength of graphene and single-walled nanotubes constructed with
typical material systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The relationship between bond strength and the electronic
structure of covalent and ionic crystals is a subject of
great interest in basic condensed matter physics, chemistry,
and materials science. These crystals exhibit excellent
functional properties in mechanics, calorifics, electrics, and
optics, making them relevant for technical applications. The
mechanical properties of the crystals—such as strength and
hardness—depend on bond strength [1–3] and other physical
quantities, such as potential barriers of a solid state reaction
and critical pressure of a solid state phase transition from the
low-density phase to the high-density phase, also should relate
directly to bond strength.

In solids, however, describing bond strength quantitatively
at the microscopic level has proven difficult, and one of
the main unsolved problems is to find what microscopic
parameters determine bond strength. Fortunately, many
covalent and ionic crystals are stable in the same structure,
and this makes them suitable for systematic studies of the
relationship between bond strength and electronic structure.

3 Author to whom any correspondence should be addressed.

Bond strength represents the degree to which each atom
linked to a central atom contributes to the valency of the
central atom and can be characterized by different scales.
Experimentally, bond strength can be indirectly expressed by
bond stiffness [4], or quantified by bond energy or bond
dissociation energy for a simple molecule and by lattice energy
for an ionic crystal [5]. Recently, atomic force microscopy has
been applied for the direct measurement of weak noncovalent
interaction forces of protein in the piconewton range [6, 7].
Theoretically, the bond strength of an ideal crystal depends on
such intrinsic characteristics of chemical bonds as bond length,
valence electrons, and the coordination number of two bonding
atoms. Pauling defined bond strength s as s = +z/N for
a coordination M X N polyhedron in a complex ionic crystal,
where +z is the ionic valence of the M cation and N is the
number of coordinating X anions [8]. Brown et al found that
bond strength s can be modeled with the power-law expression
s = (d0/d)−n for a wide variety of oxide materials, where d0

and n are two regression constants, and d is the bond length [9].
Recently, Gibbs et al provided a more accurate power-law
expression: s = 4.467rd−1/0.22 for these oxides, where r is the
row number of the M cation [10]. They also found that bond
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Figure 1. Three typical crystal structures with chemical bonds parallel to tensile directions along 〈111〉 of zincblende (a), 〈001〉 of wurtzite
(b), and 〈001〉 of rock salt (c).

strength is related in some way to the value of the electron-
density distribution on the bond and that the greater the bond
strength, the greater the number of bonding electrons [10].

These definitions and scales of bond strength are valid
only for special types of crystals. Establishing a generalized
model of bond strength has remained an open challenge. If
we can define bond strength with an unbinding force of the
chemical bond, the physical figure of bond strength for solids
becomes more apparent and more accessible than Pauling’s
definition or the above-mentioned energy scales. In this paper,
we present a simple, semi-quantitative solution to this problem
and offer a quantitative determination of the tensile unbinding
force of a chemical bond in the entire range (IV–IV, III–V,
II–VI, and I–VII) of crystals, in which the sum of the outer
shell electrons of the two binding atoms equals 8. This basic
principle can be applied also to the estimation of bond strength
in such complex crystals as β-Si3N4, where the sum of the
outer shell electrons of Si and N atoms goes over 8.

2. Model

For any type of chemical bond i– j containing eight valence
electrons per atom pair and the coordination numbers of Ni

and N j of atoms i and j , the nominal valence numbers ni

and n j of two atoms distributed to the i– j bond equal Zi/Ni

and Z j/N j , respectively, where Zi is the valence electron
number of atom i . In fact, the bonded electrons localized in
the binding region are basically smaller than ni or n j . In first-
principles calculations, the Mulliken overlap population of a
bond provides a measurement of the bonded electrons [11].
For example, the calculated population is 0.75 for C–C bonds
in diamond and 0.19 for Na–Cl bonds in NaCl crystal. The
greater localization of electron density in the binding region
of a bond results in a stronger bond. While the determination
of population largely depends on calculation formalisms [12],
it is anticipated to find an alternative parameter, which can be
easily determined, to serve as the population. We propose to
define the effectively bonded valence electron (EBVE) number
ni j of i– j bond in terms of the expression,

ni j = ni n j√
n2

i + n2
j

. (1)

The EBVE numbers of various covalent and ionic crystals are
listed in table 1, and from the results of diamond and NaCl,

one can see that the EBVE values are comparable with the
calculated population.

The ideal tensile strength of an i– j bond can be defined as
a maximum tensile force unbinding the i– j bond. Previous
studies have highlighted the role of the bond length and
valence electrons on the strength of a chemical bond, the
power behaviors of the bond length on bond strength is
shown [10, 13], and the exponential dependence of the
population-related ionicity on the resistance of a bond to
indenter is emphasized [1–3, 14]. Therefore, to describe
quantitatively the effects of ni j and bond length di j on bond
strength, the tensile unbinding force Fi j , is assumed to follow
the formalism,

Fi j = Cd−m
i j exp(kni j), (2)

where C is a proportionality coefficient, and m and k are two
different constants.

With the unbinding force of a bond, the ideal tensile
strength of a crystal is expected to be accessible. The ideal
tensile strength of a crystal has been accurately determined
by first-principles calculations [15]. In this work, first-
principles calculations were performed by the CASTEP
code. Norm-conserving pseudopotentials were used and
the exchange–correlation terms were considered by the local
density approximation method. The plane-wave cutoff energy
was 770 eV, and the Brillouin zone sampling was determined
to keep the separation between neighboring k points 0.04 Å

−1
.

The tensile strength calculation was done with the program:
the internal coordinates are relaxed for each strain, and then
the stress is obtained. For a simple structural crystal, as shown
in figure 1, generally, the weakest tensile directions, such as
〈111〉 of the zincblende (ZB) structure, 〈001〉 of wurtzite (WZ),
and 〈001〉 of rock salt (RS) are parallel to the axes of broken
bonds. Thus, the ideal tensile strength σhkl of a crystal along
the weakest 〈hkl〉 direction should be correlated with Fi j as

σhkl = Shkl Fi j = C Shkl d
−m
i j exp(kni j), (3)

where Shkl , in units of m−2, is the number of the broken
bonds per unit area on the (hkl) plane, which has the lowest
bond density. We optimize the three unknown parameters in
equation (3) from data in table 1 by using the Levenberg–
Marquardt method [16], and obtain the following expressions

σ theor
hkl (Pa) = 6.6 × 10−10Shkl d

−1.32
i j exp(3.7ni j), (4)

2
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Table 1. Parameters related to the bond strength calculations of typical covalent, polar covalent and ionic crystals. a and c are cell
parameters, Shkl is the number of the broken bonds per unit area on the (hkl) plane, di j is the bond length of the i– j bond, and ni j is the
effectively bonded valence electron number. σhkl and σ theor

hkl are the ideal tensile strength and the calculated theoretical tensile strength of a
crystal in the given direction, respectively. F theor

i j is the tensile force unbinding the i– j bond.

Bond
(crystal)

Structure
〈hkl〉

aa

(Å)
ca

(Å)
Shkl

(×1020 m−2)
di j

(Å) ni j

σ b
hkl

(GPa)
σ theor

hkl
(GPa)

F theor
i j

(nN)

C–C (Dia.) ZB〈111〉 3.567 — 0.182 1.545 0.707 93.0c 92.4 5.09
Si–Si (ZB-Si) ZB〈111〉 5.431 — 0.078 2.352 0.707 21.3 22.9 2.92
Ge–Ge (Ge) ZB〈111〉 5.658 — 0.072 2.450 0.707 17.8 20.0 2.77
Sn–Sn (α-Sn) ZB〈111〉 6.491 — 0.055 2.811 0.707 10.5 12.7 2.31
Si–C (β-SiC) ZB〈111〉 4.348 — 0.122 1.883 0.707 50.1 47.9 3.92
B–N (c-BN) ZB〈111〉 3.615 — 0.177 1.565 0.643 66.0c 69.7 3.95
Al–P (AlP) ZB〈111〉 5.420 — 0.078 2.347 0.643 18.7 18.2 2.31
Ga–P (GaP) ZB〈111〉 5.450 — 0.078 2.360 0.643 17.7 17.8 2.29
B–As (BAs) ZB〈111〉 4.777 — 0.101 2.069 0.643 30.3 27.6 2.73
Al–As (AlAs) ZB〈111〉 5.662 — 0.072 2.452 0.643 16.1 15.7 2.18
Ga–As (GaAs) ZB〈111〉 5.653 — 0.072 2.449 0.643 14.6 15.8 2.19
C–C (Lons.) WZ〈001〉 2.522 4.119 0.182 1.545 0.707 93.5 92.4 5.09
Si–Si (WZ–Si) WZ〈001〉 3.792 6.256 0.080 2.346 0.707 21.3 23.5 2.93
Al–N (AlN) WZ〈001〉 3.111 4.978 0.119 1.917 0.643 38.0d 36.0 3.02
Ga–N (GaN) WZ〈001〉 3.190 5.189 0.116 1.956 0.643 36.3 33.4 2.94
Zn–O (ZnO) WZ〈001〉 3.249 5.205 0.109 1.992 0.474 16.7 16.8 1.54
Na–Cl (NaCl) RS〈001〉 5.639 — 0.126 2.820 0.165 3.8 3.9 0.31
K–Cl (KCl) RS〈001〉 6.292 — 0.101 3.146 0.165 3.2 2.7 0.27
Na–F (NaF) RS〈001〉 4.614 — 0.188 2.307 0.165 7.2 7.6 0.40
Na–Br (NaBr) RS〈001〉 5.962 — 0.113 2.981 0.165 3.1 3.2 0.29
Na–I (NaI) RS〈001〉 6.479 — 0.095 3.240 0.165 2.4 2.5 0.26
Rb–Cl (RbCl) RS〈001〉 6.535 — 0.094 3.268 0.165 2.8 2.4 0.25
Mg–O (MgO) RS〈001〉 4.217 — 0.225 2.109 0.316 16.8 17.9 0.79
Mg–S (MgS) RS〈001〉 5.202 — 0.148 2.601 0.316 9.1 8.9 0.60
Ca–O (CaO) RS〈001〉 4.811 — 0.173 2.406 0.316 13.5 11.5 0.67
Ba–O (BaO) RS〈001〉 5.539 — 0.130 2.770 0.316 8.5 7.2 0.55

a Experimental data taken from the international center for diffraction data (ICDD) cards.
b Unless noted, all data of ideal strength are from present first-principles calculations using a method
described in [15].
c Reference [17].
d Reference [18].

and
F theor

i j (N) = 6.6 × 10−10d−1.32
i j exp(3.7ni j). (5)

The square of the correlation coefficient R2 = 0.996 with
the mean absolute fractional deviation of ∼7% indicates that
equations (4) and (5) are accurate enough to estimate σhkl and
Fi j .

3. Results and discussion

We have examined a wide variety of covalent and ionic crystals
with a single type of chemical bond, for which ni j , di j and Shkl

are already known or can be calculated from the experimental
values of the lattice parameters. Using the data in table 1, we
obtain a remarkable linear relationship between logarithmic
σhkl and Shkl d

−1.32
i j exp(3.7ni j) as shown in figure 2. An

optimized C value makes a valid estimate of σhkl for a broad
range of crystals, which have ZB, WZ, and RS structures
and pure covalent, polar covalent, and ionic features. For
each crystal in table 1, the difference between the present
theoretical tensile strength σ theor

hkl and ideal tensile strength σideal

is within the tolerance of ideal strength from first-principles
calculations. Reasonably, the simple relationship of F theor

i j or

σ theor
hkl with di j and ni j should be semi-quantitatively valid for

such a variety of covalent and ionic crystals. Thus, the bond
strength of complex crystals such as β-Si3N4, β-C3N4, α-
quartz, cubic-gauche (cg)-N and α-Al2O3 can be also predicted
using this model. The formed chemical bonds in these crystals
are typical two-electron bonds. The former four crystals in the
structure obey the 8-N rule. There is a non-bonding electron
pair on each N atom for β-Si3N4, β-C3N4, and cg-N and
two non-bonding electron pairs on each O atom for α-quartz.
Thus ni and n j are equal to 1. In α-Al2O3, six O atoms
surround each Al atom, and four Al atoms surround each O
atom. Therefore, n Al and nO are 0.5 and 1.5. Table 2 lists
the F theor

i j values for the individual chemical bond of the five
crystals. Obviously, both N–N bond in cg-N and C–N bond
in β-C3N4 are stronger than the sp3-hybridized C–C bond
in diamond or lonsdaleite. For a number of covalent, polar
covalent, and ionic bonds in the crystals listed in tables 1 and 2,
we show the bond strength F theor

i j versus bond length di j in
figure 3. Of these 29 kinds of bonds, the strongest bond is
N–N, followed by C–N, C–C, Si–O, Si–N, B–N, and Si–C,
in sequence. For the bonds in figure 3, all the values of the
tensile unbinding forces are located on five lines marked with
different ni j , and the bonds with the same ni j locate on the

3
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Figure 2. Ideal tensile strength σhkl of a crystal along the weakest
〈hkl〉 direction as a function of Shkld

−1.32
i j exp(3.7ni j ). Shkl is the

number of the broken bonds per unit area on the (hkl) plane, di j the
bond length in angstroms, and ni j the effectively bonded valence
electron number. The term, d−1.32

i j exp(3.7ni j ), scales with the
maximum tensile force unbinding the i– j bond, Fij . The solid line is
from equation (4). The data cover various crystals involving pure
covalent crystals (Diamond, Lonsdaleite, ZB–Si, WZ–Si, α-Sn, and
Ge), polar covalent solids (c-BN, β-SiN, AlN, GaN, BAs, AlP, GaP,
ZnO, AlAs, GaAs and MgS), and ionic solids (CaO, BaO, NaF,
NaBr, KCl, RbCl, and NaI).

Table 2. Parameters related to the bond strength calculations of five
complex crystals. a and c are cell parameters, di j is bond length , ni

and n j are the nominal valence numbers of atom i or j , ni j is
effectively bonded valence electron number of i– j bond, and F theor

i j is
the tensile force unbinding the i– j bond.

Crystal Bond a (Å) c (Å) di j (Å) ni n j ni j

F theor
i j

(nN)

β-Si3N4 Si–N 7.602a 2.907a 1.732 1 1 0.707 4.38
β-C3N4 C–N 6.403b 2.405b 1.452 1 1 0.707 5.52
α-quartz Si–O 4.913a 5.405a 1.608 1 1 0.707 4.83
cg-N N–N 3.454c — 1.346 1 1 0.707 6.10
α-Al2O3 Al–O 4.759a 12.991a 1.913 0.5 1.5 0.474 1.62

a Experimental data taken from ICDD cards. b Reference [19].
c Reference [20].

same line. The average coordination number of two binding
atoms on the highest line is 3 for N–N and Si–O bonds, 3.5
for C–N and Si–N bonds, and 4 for C–C, Si–C, Si–Si, Ge–Ge,
and Sn–Sn bonds, respectively, while the coordination number
on the lowest line is 6. This implies that the low-coordination
crystal structure has the tendency of higher bond strength.

The theoretical tensile strength of low-dimensional
materials such as graphene and nanotubes are of considerable
interest in fundamental and technical aspects [21]. It has been
pointed out that the sp2 hybridized C–C bond in the graphene
is the strongest chemical bond [22]. The macroscopically
estimated theoretical strength of graphene is 326 GPa using the
Frenkel model and 140–170 GPa using the Orowan–Polanyi
model [23]. Recent first-principles investigations indicate
that the ideal tensile strength of graphene in the zigzag 〈10〉
direction is 110 GPa [24], slightly lower than the experimental

Figure 3. Bond strength F theor
i j versus bond length di j for the

chemical bonds in 31 crystals with various values of effectively
bonded valence electron number, ni j . The five solid lines are from
equation (5).

value of 130 GPa [25]. Here we predict the theoretical tensile
strength σ theor

10 of graphene in 〈10〉 direction using the present
model as follows

σ theor
10 = S10 Fcc = Fcc√

3dcc × δR
, (6)

where δR is the thickness of graphene taken as the interlayer
separation 3.4 Å of graphite [26]. Table 3 lists the values of Fcc

and dcc. The theoretical tensile strength obtained is 162.7 GPa
in the 〈10〉 direction, 20% higher than the experimental value.
Similarly, we can predict the theoretical tensile strength σ theor

axial
of C, SiC, BN, and AlN single-walled nanotubes (SWNTs) in
the axial direction as

σ theor
axial = Saxial Fi j = nFi j

π
[( Dep+δR

2

)2 − ( Dep−δR
2

)2] , (7)

where Dep is the diameter of the nanotube, and n is the first
index of the chiral vector (n, m) for nanotubes. Here we select
four zigzag SWNTs of C (10, 0), SiC (10, 0), BN (10, 0),
and AlN (10, 0) for our calculations. As table 3 shows, the
theoretical tensile strength of C (10, 0) SWNT is 161.0 GPa,
almost the same as that of graphene. The first report of the
experimental tensile strength of multi-walled carbon nanotube
(MWCNT) is only 11–63 GPa [29]. In a recent report, this
value reached 150 GPa [23], 93% of our present theoretical
value.

Finally, we must address briefly the dependence of the
ideal strength on the orientation of the tensile stress. If the
stress is not along the axis of a chemical bond, a shear vector
component would be generated. If the shear unbinding strength
can be also expressed, the ideal strength along a specific
direction of a crystal will be accessed. Further studies are
therefore expected.

4
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Table 3. Parameters used for the theoretical tensile strength calculations of graphene and nanotubes constructed with five kinds of materials.
Dep is the diameter of the nanotubes, di j is bond length, ni and n j are the nominal valence numbers of atom i or j , ni j is the effectively
bonded valence electron number of the i– j bond and, F theor

i j is the tensile force unbinding the i– j bond. σtheor refers to the calculated tensile
strength in the 〈10〉 direction for graphene or along the axial direction for nanotubes. σexp is the experimental tensile strength.

Bond
Graphene 〈hk〉/
nanotube (n, m) Dep (Å) di j (Å) ni n j ni j

F theor
i j

(nN)
σtheor

(GPa)
σexp

(GPa)

C–C Graphene 〈10〉 — 1.419a 1.333 1.333 0.943 13.6 162.7 130b

C–C C (10, 0) 7.91c 1.42 1.333 1.333 0.943 13.6 161.0 11–63d,e150e,f

Si–C SiC (10, 0) 9.95g 1.80 1.333 1.333 0.943 9.94 93.6 —
B–N BN (10, 0) 8.11c 1.45 1 1.667 0.857 9.65 111.4 —
Al–N AlN (10, 0) 10.33h 1.83 1 1.667 0.857 7.10 64.3 —

a Reference [27]. b Reference [25]. c Reference [28]. d Reference [29]. e Experimental data of multi-walled
carbon nanotubes. f Reference [23]. g Reference [30]. h Reference [31].

4. Conclusions

The above results confirm that bond strength in solids relies
strongly on the electronic structure of a solid, in particular, on
the EBVE number of the bond. The tensile strength of the C–
C bond in graphene and SWCNTs is 2.67 times greater than
that in diamonds, and such bonds as Si–C, B–N, and Al–N
in the low-dimensional structures of nanotubes also become
significantly stronger than C–C bonds in diamond because
of higher ni j . The model developed in this study, therefore,
proves to be valid for a wide variety of crystals, even for low-
dimensional materials such as graphene and nanotubes.
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